Children's Immortality beats the alternatives
Google
http://inventory.uk.overture.com/d/searchinventory/suggestion/

free space optics fso reprint
Nov 18, 2007 4:30 PM


Robert Ray Hedges
Nevada City
What is Free Space Optics (FSO)? Free Space Optics (FSO) or Optical Wireless, refers to the transmission of modulated visible or infrared (IR) beams through the air to obtain optical communications. Like fiber, Free Space Optics (FSO) uses lasers to transmit data, but instead of enclosing the data stream in a glass fiber, it is transmitted through the air. It is a secure, cost-effective alternative to other wireless connectivity options. Free Space Optics - FSO: Technology History Market Challenges Advantages Free Space optics (fso): An Introduction Would you like to know more about FSO solutions? Get a free Link Assessment Report to see if FSO is right for you See FSO @ Work Around the Globe Access FSO White Papers, Application notes, News and Articles here Free Space Optics (FSO) communications, also called Free Space Photonics (FSP) or Optical Wireless, refers to the transmission of modulated visible or infrared (IR) beams through the atmosphere to obtain optical communications. Like fiber, Free Space Optics (FSO) uses lasers to transmit data, but instead of enclosing the data stream in a glass fiber, it is transmitted through the air. Free Space Optics (FSO) works on the same basic principle as Infrared television remote controls, wireless keyboards or wireless Palm® devices. History of Free Space Optics (FSO) The engineering maturity of Free Space Optics (FSO) is often underestimated, due to a misunderstanding of how long Free Space Optics (FSO) systems have been under development. Historically, Free Space Optics (FSO) or optical wireless communications was first demonstrated by Alexander Graham Bell in the late nineteenth century (prior to his demonstration of the telephone!). Bell’s Free Space Optics (FSO) experiment converted voice sounds into telephone signals and transmitted them between receivers through free air space along a beam of light for a distance of some 600 feet. Calling his experimental device the “photophone,” Bell considered this optical technology – and not the telephone – his preeminent invention because it did not require wires for transmission. Although Bell’s photophone never became a commercial reality, it demonstrated the basic principle of optical communications. Essentially all of the engineering of today’s Free Space Optics (FSO) or free space optical communications systems was done over the past 40 years or so, mostly for defense applications. By addressing the principal engineering challenges of Free Space Optics (FSO), this aerospace/defense activity established a strong foundation upon which today’s commercial laser-based Free Space Optics (FSO) systems are based. How Free Space Optics (FSO) Works Free Space Optics (FSO) transmits invisible, eye-safe light beams from one "telescope" to another using low power infrared lasers in the teraHertz spectrum. The beams of light in Free Space Optics (FSO) systems are transmitted by laser light focused on highly sensitive photon detector receivers. These receivers are telescopic lenses able to collect the photon stream and transmit digital data containing a mix of Internet messages, video images, radio signals or computer files.Commercially available systems offer capacities in the range of 100 Mbps to 2.5 Gbps, and demonstration systems report data rates as high as 160 Gbps. Free Space Optics (FSO) systems can function over distances of several kilometers. As long as there is a clear line of sight between the source and the destination, and enough transmitter power, Free Space Optics (FSO) communication is possible. FSO: Wireless, at the Speed of Light Unlike radio and microwave systems, Free Space Optics (FSO) is an optical technology and no spectrum licensing or frequency coordination with other users is required, interference from or to other systems or equipment is not a concern, and the point-to-point laser signal is extremely difficult to intercept, and therefore secure. Data rates comparable to optical fiber transmission can be carried by Free Space Optics (FSO) systems with very low error rates, while the extremely narrow laser beam widths ensure that there is almost no practical limit to the number of separate Free Space Optics (FSO) links that can be installed in a given location. How Free Space Optics (FSO) can help you FSO’s freedom from licensing and regulation translates into ease, speed and low cost of deployment. Since Free Space Optics (FSO) transceivers can transmit and receive through windows, it is possible to mount Free Space Optics (FSO) systems inside buildings, reducing the need to compete for roof space, simplifying wiring and cabling, and permitting Free Space Optics (FSO) equipment to operate in a very favorable environment. The only essential requirement for Free Space Optics (FSO) or optical wireless transmission is line of sight between the two ends of the link. For Metro Area Network (MAN) providers the last mile or even feet can be the most daunting. Free Space Optics (FSO) networks can close this gap and allow new customers access to high-speed MAN’s. Providers also can take advantage of the reduced risk of installing an Free Space Optics (FSO) network which can later be redeployed. The Market. Why FSO? Breaking the Bandwidth Bottleneck Why FSO? The global telecommunications network has seen massive expansion over the last few years. First came the tremendous growth of the optical fiber long-haul, wide-area network (WAN), followed by a more recent emphasis on metropolitan area networks (MANs). Meanwhile, local area networks (LANs) and gigabit ethernet ports are being deployed with a comparable growth rate. In order for this tremendous network capacity to be exploited, and for the users to be able to utilize the broad array of new services becoming available, network designers must provide a flexible and cost-effective means for the users to access the telecommunications network. Presently, however, most local loop network connections are limited to 1.5 Mbps (a T1 line). As a consequence, there is a strong need for a high-bandwidth bridge (the “last mile” or “first mile”) between the LANs and the MANs or WANs. A recent New York Times article reported that more than 100 million miles of optical fiber was laid around the world in the last two years, as carriers reacted to the Internet phenomenon and end users’ insatiable demand for bandwidth. The sheer scale of connecting whole communities, cities and regions to that fiber optic cable or “backbone” is something not many players understood well. Despite the huge investment in trenching and optical cable, most of the fiber remains unlit, 80 to 90% of office, commercial and industrial buildings are not connected to fiber, and transport prices are dropping dramatically. Free Space Optics (FSO) systems represent one of the most promising approaches for addressing the emerging broadband access market and its “last mile” bottleneck. Free Space Optics (FSO) systems offer many features, principal among them being low start-up and operational costs, rapid deployment, and high fiber-like bandwidths due to the optical nature of the technology. Broadband Bandwidth Alternatives Access technologies in general use today include telco-provisioned copper wire, wireless Internet access, broadband RF/microwave, coaxial cable and direct optical fiber connections (fiber to the building; fiber to the home). Telco/PTT telephone networks are still trapped in the old Time Division Multiplex (TDM) based network infrastructure that rations bandwidth to the customer in increments of 1.5 Mbps (T-1) or 2.024 Mbps (E-1). DSL penetration rates have been throttled by slow deployment and the pricing strategies of the PTTs. Cable modem access has had more success in residential markets, but suffers from security and capacity problems, and is generally conditional on the user subscribing to a package of cable TV channels. Wireless Internet access is still slow, and the tiny screen renders it of little appeal for web browsing. Broadband RF/microwave systems have severe limitations and are losing favor. The radio spectrum is a scarce and expensive licensed commodity, sold or leased to the highest bidder, or on a first-come first-served basis, and all too often, simply unavailable due to congestion. As building owners have realized the value of their roof space, the price of roof rights has risen sharply. Furthermore, radio equipment is not inexpensive, the maximum data rates achievable with RF systems are low compared to optical fiber, and communications channels are insecure and subject to interference from and to other systems (a major constraint on the use of radio systems). Free Space Optics (FSO) Advantages Free space optical (FSO) systems offers a flexible networking solution that delivers on the promise of broadband. Only free space optics or Free Space Optics (FSO) provides the essential combination of qualities required to bring the traffic to the optical fiber backbone – virtually unlimited bandwidth, low cost, ease and speed of deployment. Freedom from licensing and regulation translates into ease, speed and low cost of deployment. Since Free Space Optics (FSO) optical wireless transceivers can transmit and receive through windows, it is possible to mount Free Space Optics (FSO) systems inside buildings, reducing the need to compete for roof space, simplifying wiring and cabling, and permitting the equipment to operate in a very favorable environment. The only essential for Free Space Optics (FSO) is line of sight between the two ends of the link. Free Space Optics (FSO) Security The common perception of wireless is that it offers less security than wireline connections. In fact, Free Space Optics (FSO) is far more secure than RF or other wireless-based transmission technologies for several reasons: Free Space Optics (FSO) laser beams cannot be detected with spectrum analyzers or RF meters Free Space Optics (FSO) laser transmissions are optical and travel along a line of sight path that cannot be intercepted easily. It requires a matching Free Space Optics (FSO) transceiver carefully aligned to complete the transmission. Interception is very difficult and extremely unlikely The laser beams generated by Free Space Optics (FSO) systems are narrow and invisible, making them harder to find and even harder to intercept and crack Data can be transmitted over an encrypted connection adding to the degree of security available in Free Space Optics (FSO) network transmissions. Free Space Optics (FSO) Challenges The advantages of free space optical wireless or Free Space Optics (FSO) do not come without some cost. When light is transmitted through optical fiber, transmission integrity is quite predictable – barring unforseen events such as backhoes or animal interference. When light is transmitted through the air, as with Free Space Optics (FSO) optical wireless systems, it must contend with a a complex and not always quantifiable subject - the atmosphere. Fog and Free Space Optics (FSO) Fog substantially attenuates visible radiation, and it has a similar affect on the near-infrared wavelengths that are employed in Free Space Optics (FSO) systems. Note that the effect of fog on Free Space Optics (FSO) optical wireless radiation is entirely analogous to the attenuation – and fades – suffered by RF wireless systems due to rainfall. Similar to the case of rain attenuation with RF wireless, fog attenuation is not a “show-stopper” for Free Space Optics (FSO) optical wireless, because the optical link can be engineered such that, for a large fraction of the time, an acceptable power will be received even in the presence of heavy fog. Free Space Optics (FSO) optical wireless-based communication systems can be enhanced to yield even greater availabilities. Physical Obstructions and Free Space Optics (FSO) Free Space Optics (FSO) products which have widely spaced redundant transmitters and large receive optics will all but eliminate interference concerns from objects such as birds. On a typical day, an object covering 98% of the receive aperture and all but 1 transmitter; will not cause an Free Space Optics (FSO) link to drop out. Thus birds are unlikely to have any impact on Free Space Optics (FSO) transmission. Free Space Optics (FSO) Pointing Stability – Building Sway, Tower Movement Fixed pointed Free Space Optics (FSO) systems are designed to be capable of handling the vast majority of movement found in deployments on buildings. The combination of effective beam divergence and a well matched receive Field-of-View (FOV) provide for an extremely robust fixed pointed Free Space Optics (FSO) system suitable for most deployments. Fixed-pointed Free Space Optics (FSO) systems are generally preferred over actively-tracked Free Space Optics (FSO) systems due to their lower cost. Scintillation and Free Space Optics (FSO) Performance of many Free Space Optics (FSO) optical wireless systems is adversely affected by scintillation on bright sunny days; the effects of which are typically reflected in BER statistics. Some optical wireless products have a unique combination of large aperture receiver, widely spaced transmitters, finely tuned receive filtering, and automatic gain control characteristics. In addition, certain optical wireless systems also apply a clock recovery phase-lock-loop time constant that all but eliminate the affects of atmospheric scintillation and jitter transference. Solar Interference and Free Space Optics (FSO) Solar interference in Free Space Optics (FSO) free space optical systems operating at 1550 nm can be combatted in two ways. The first is a long-pass optical filter window used to block all optical wavelengths below 850 nm from entering the system; the second is an optical narrowband filter proceeding the receive detector used to filter all but the wavelength actually used for intersystem communications. To handle off-axis solar energy, two spatial filters have been implemented in SONAbeam systems, allowing them to operate unaffected by solar interference that is more than 1.5 degrees off-axis. Free Space Optics (FSO) Reliability Employing an adaptive laser power (Adaptive Power Control or APC) scheme to dynamically adjust the laser power in response to weather conditions will improve the reliability of Free Space Optics (FSO) optical wireless systems. In clear weather the transmit power is greatly reduced, enhancing the laser lifetime by operating the laser at very low-stress conditions. In severe weather, the laser power is increased as needed to maintain the optical link - then decreased again as the weather clears. A TEC controller that maintains the temperature of the laser transmitter diodes in the optimum region will maximize reliability and lifetime, consistent with power output allowing the FSO optical wireless system to operate more efficiently and reliably at higher power levels. Learn more here »
CopyRightAway Share Bigtime phpBB Group Robert Ray Hedges + Friends Designed by Robert Ray Hedges for Destinial Excellence phpBB by bobbie